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MICRO-614: Electrochemical Nano-Bio-Sensing 
and Bio/CMOS interfaces 

Lecture #8
Nanotechnology to prevent 
Electron Transfer
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• Electrical behavior of DNA at 
the interface

• Nanoscale properties of DNA 
films

• Blocking agents
• Precursor films
• Electrical behavior of Antibodies

Lecture Outline
(Book Bio/CMOS: Chapter 8)
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CMOS/Sample interface

The interface between the CMOS circuit and the bio-
sample needs to be deeply investigated and organized
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The Capacitance DNA Detection
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measurements as due to charge displacement
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Interface models

Equivalent circuits of DNA Bio/CMOS interface
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CPE element
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CPE element

-
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Equivalent Capacitance vs frequency
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Charge transfer pathways through the DNA layer affect the 
ideal Capacitance behavior of the bio-layer
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Solution ions in free contact with electrodes surface 
results in very large standard deviations

Large Standard deviation

Nano-aperture in the probes film
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Heavy metal ion capacitance detection by using 
phytochelatine as probe molecule 

Large time drift

The problem of time instability
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Nano-aperture blocked 
in the probes film

Ion Pathways blocked at the nanoscale

Ions Pathways blocked by a co-immobilized agent
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Increased stability by using mercapto-hexanol 
or longer thiols

Blocking Agents

Mercapto-Hexanol Mercapto-Undecanoic Acid
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Improved insulating behavior

Redox reaction of K3Fe(CN)6 on gold electrode (a), 
ss-DNA onto gold (b) and ss-DNA + 1-dodecanethiol onto gold (c)

Not enough Insulating
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Monolayer of ssDNA with blocking agents still 
present deep groves crossing the film

13 nm
400nm

Mercapto-Hexanol

Nano-scale Apertures

?
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Mercapto-Hexanol is not enough as blocking agent

Capacitance Instability

Mercapto-Hexanol
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Mercapto-Hexanol partially block

The presence of mercapto-hexanol partially prevent the 
solution ions in free contact with electrodes and results in a 

reduction of the standard deviations
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Increased stability by using Lipa-DEA 
as blocking agent

More Effective Blocking Agents

Mercapto-Hexanol

Lipa-DEA

Mercapto-Undecanoic Acid

Lipa-Tris
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N,N-bis(2-hydroxyethyl)-a-lipoamide (Lipa-DEA) may be used 
as more efficient blocking agents

Lipa-DEA blockers

Different kind of thiols developed by Inger Vikholm
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Monolayer of ssDNA with blocking agents still present 
deep groves crossing the film

0.7 nm

200nm

3,9 nm

Nano-scale Apertures

Lipa-DEA
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Increased stability by using Lipa-DEA as blocking agent

Improved Capacitance Stability

Mercapto-Hexanol

Lipa-DEA
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Lipa-DEA further improves

The presence of Lipa-DEA further prevent the solution ions in 
free contact with electrodes and results in a strong reduction 

of the standard deviations
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Increased stability by introducing precursors 
monolayers with Ethylene-Glycol function

Precursors Monolayers

Mercapto-Hexanol

Lipa-DEA

Mercapto-Undecanoic Acid Ethylene-Glycol Thiols

Lipa-Tris
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Film precursors below probes

Highly packed thiols monolayer may be used 
to improve the DNA detection capability

No ways of direct access of the bare gold

Well formed 
SAM

Peptide
Bond
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Nano-scale Apertures

Monolayer of alkanethiols with ethylene-glycol chains 
does not present deep groves crossing the film

3.75 nm

Mercapto-Undecanoic Acid60nm
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Absence of Nano-scale Apertures

Monolayer of alkanethiols with ethylene-glycol chains 
does not present deep groves crossing the film

0.5 nm

Ethylene-Glycol Film

50nm
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Increased stability by using Ethylene-Glycol thiols

Improved Capacitance Stability
Thiols without glycole segment
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Charges on an Antibody
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Covalently linked by using Ethylene-Glycol 
carboxyl terminated alkyl Thiols

To prevent non-specific binding

Different kind of thiols developed by G.M.Whitesides

Ethylene-Glycol Blockers
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Capacitive detection

Charged residues of the antibody may affect charge 
carriers in the electrode
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Reduced scattered-data
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Cancer Marker Capacitance Detection

Highly reproducible Capacitance detection of the cancer-marker protein 
SCCA by immobilizing the antibodies onto EG-Thiols precursors
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Capacitance detection of DNA

Large detection 
errors reduction

Highly –reproducible DNA detection based on ss-DNA-SH terminated 
directly immobilized onto gold and ss-DNA-NH2 terminated 

immobilized onto EG-Thiols
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Space filling molecular model illustration of EG-thiols film presenting 
a 1:1 mixture of -CON(CH2CH2O)nH (n ) 1, 3, or 6) 

and O2H/CO2- groups.

Why it works so well to close nano-apertures?
Space filling by EG thiols 
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Molecular conformations driven by terminal groups in EG-thiols

OH-terminated

Water Adsorption in thin films
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Water adsorption and Molecular conformation 
in EG-thiols Film

Water Adsorption in thin films
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Covalently linked by using three-glycol 
carboxyl terminated alkyl Thiols

OH-terminated

for probes binding

Water Adsorption in thin films

helical conformation helical conformation
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Water Adsorption in thin films

Film Water adsorption on alkyl thiol film chains

7 water molecules
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Water molecule are stored in the 
intra-molecular space in the thin film

Water in Organic Films
RH < 50%

RH > 50%
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Water in Organic Films
RH < 50%

RH > 50%

STM imaging showed water molecule stored 
in the intra-molecular space in the thin film
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QCM measurements on dried EG-thiols film 
conditioned with water buffer

Water Adsorption in thin films


